

VIBRATIONS ANALYSIS 40M ICE CLASS MOTOR YACHT

COMPARISON BETWEEN
FINITE ELEMENTS ANALYSIS AND
EXPERIMENTAL MEASUREMENTS

SUPERVISOR: DARIO BOOTE (UNIGE)
REVIEWER: ZBIGNIEW SEKULSKI (ZUT)

MARIA SOL MASSERA

SOURCES OF VIBRATIONS ON A YACHT

ICE CLASS YACHT

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMEN

COMPARISON

Technical Data	Value	Unit
Length Over All - LOA	40.8	m
Length waterline - LWL	39.2	m
Beam max	9.40	m
Draft	2.79	m
Depth	6.3	m
Full load Displacement	438	tons
V max	16	kn

VIBRATION APPROACHES

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMENT

COMPARISON

EXPERIMENTAL MEASUREMENTS

DIRECT METHOD TO OBTAIN RESPONSE RESULTS

Results

Obtention and visualization of results

Data acquisition

A signal analyzer collects the electronic signals send by the sensors.

Measurement instruments

Location of accelerometers along the yacht, positions and type of element depends on type of study

Impact method

Excitation of the structure through impact to obtain natural frequencies of the structure

FINIT ELEMENT MODEL

METHOD USED TO FIND APPROXIMATE SOLUTIONS TO THE SYSTEM OF EQUATIONS WHICH ARE DEFINING THE PROBLEM.

Results

Obtention and visualization of results. Graphics for analyses

Methods of computation

Selection of mathematical models to solve the systems, resoltion of equations.

Phisical model

Simplification of the real engineering problem into something possible to solve by FEA

FEA model

Mesh the model, define material properties, boundary conditions and applied forces.

VIBRATION APPROACHES

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMENT

COMPARISON

FEM MODEL

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMEN'

COMPARISON

FEM ANALYSIS

NATURAL FREQUENCIES ON THE MODEL

Subcaseid= 9: SC1:DEFAULT, A3:Mode 9: Freq. = 8.6233;-MSC.NASTRAN JOB CREATED C Subcaseid= 10: SC1:DEFAULT, A3:Mode 10: Freq. = 9.5713;-MSC.NASTRAN JOB CREATEL Subcaseid= 11: SC1:DEFAULT, A3:Mode 11: Freq. = 10.285;-MSC.NASTRAN JOB CREATEL Subcaseid= 12: SC1:DEFAULT, A3:Mode 12: Freq. = 10.581;-MSC.NASTRAN JOB CREATEL Subcaseid= 13: SC1:DEFAULT, A3:Mode 13: Freq. = 12.159;-MSC.NASTRAN JOB CREATEL

VIBRATION APPROACHES

ICE CLASS

YACHT

FEM MODEL

MEASUREMEN

COMPARISON

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMEN?

COMPARISON

CONCLUSIONS

YACHT CINEMA

MEASUREMENTS

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMENT

COMPARISON

CONCLUSIONS

SENSORS LOCATION

IMPACT TEST

Results on measurement system

MEASUREMENTS RESULTS

TRANSVERSAL RESULTS

VIBRATION

APPROACHES

ICE CLASS

YACHT

FEM MODEL

MEASUREMENT

COMPARISON

CONCLUSIONS

LONGITUDINAL RESULTS

RESULTS COMPARISON

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMENT

COMPARISON

CONCLUSIONS

ICE CLASS YACHT

VIBRATION APPROACHES

FEM MODEL

MEASUREMENT

COMPARISO

- The actual FEM model gives trustful results, with errors below 5%, it is recommended to use it for further analyses.
- Supports of the yacht are not highly influencing the results of main response on deck
- Errors could be due to extra weights onboard of the yacht at the time of measurements not considered in FEM model.
- Further analyses considering added masses and weight distribution on the yacht must be performed to obtain more information about the vibrations behaviour

THANKS FOR YOUR ATTENTION

MARIA SOL MASSERA